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Abstract
It was recently suggested by Blythe and Evans that a properly defined steady
state normalization factor can be seen as a partition function of a fictitious
statistical ensemble in which the transition rates of the stochastic process play
the role of fugacities. In analogy with the Lee–Yang description of phase
transition of equilibrium systems, they studied the zeros in the complex plane
of the normalization factor in order to find phase transitions in nonequilibrium
steady states. We show that like for equilibrium systems, the ‘densities’
associated with the rates are nondecreasing functions of the rates and therefore
one can obtain the location and nature of phase transitions directly from the
analytical properties of the ‘densities’. We illustrate this phenomenon for the
asymmetric exclusion process. We actually show that its normalization factor
coincides with an equilibrium partition function of a walk model in which the
‘densities’ have a simple physical interpretation.

PACS numbers: 05.20.−y, 05.70.−a, 02.50.−r

1. Introduction

The extension of concepts used in equilibrium statistical mechanics, such as the free energy,
to nonequilibrium steady states is a subject of great interest [1, 2]. That a simple extension
is not possible can be seen in [3] where it was shown that in certain cases, the free energy
functional is not a convex function of the density. On the other hand, Arndt [4] has shown
in the example of the totally asymmetric simple exclusion model (TASEP) that applying the
Lee–Yang description using the zeros of an ad hoc definition of a grand-canonical partition
function gives the correct phase transition. Further applications of this idea can be found in
[5–7]. In a very interesting new development, Blythe and Evans [8] considered the
normalization of the stationary state of several stochastic systems as a function of the transition
rates and applied the Lee–Yang approach in the same way as one would for an equilibrium
partition function. While a normalization may seem to be defined ambiguously, it was noted
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in [9, 10] that in a formal way, a unique definition of this normalization can be made using the
matrix-tree theorem, which has a long history in graph theory going back to Sylvester [11],
see also [12, 13] and sections 2 and 4. This connection explicitly relates the normalization
of a stationary state to the combinatorial problem of counting weighted spanning trees on
graphs, which implies a direct interpretation of the normalization as a statistical mechanical
partition sum. Can we learn anything about the steady state phase diagram from the spanning
trees? There are a few problems with that. For example, it is generically unclear how the
order parameters describing the spanning trees relate to those describing the steady state, and
vice versa. Secondly, the normalization as defined above may not be ‘minimal’ in the sense
that it may contain an overall nontrivial polynomial factor which is common to each of the
stationary state weights. Such a polynomial factor cannot contribute to the phase behaviour
of the stationary state. We will call the normalization as defined via the matrix-tree theorem
but with common factors removed the reduced normalization.

The purpose of this paper is to try to bring a better understanding of the Blythe–Evans
approach which is summarized in section 2. In this section, we also show that to each transition
rate one can formally associate ‘particle numbers’ the same way one relates particle numbers
to fugacities. Moreover, like in thermodynamics, one can prove that the ‘particle numbers’ are
nondecreasing functions of the transition rates. This important observation allows us to detect
the existence of phase transitions from the behaviour of the ‘particle numbers’ in the space
of transition rates. At this point the physical meaning of the ‘particles’ is completely obscure
(there are as many kinds of ‘particles’ as the number of independent transition rates minus one).
Moreover, the thermodynamic potential defined through the (reduced) normalization factor is
not necessarily an extensive quantity. The volume, defined by the leading asymptotic behaviour
of the normalization, and therefore the definition of the ‘densities’ might change in the space
of transition rates. This allows for phase transitions not encountered in equilibrium models
with local interactions. This phenomenon appears in the following way. In a certain domain
of the fugacities, the ‘densities’ span the entire interval between zero and one. This defines a
‘phase’ (inside this domain one can have, like in equilibrium, several phase transitions). The
boundary of the domain separates it from another domain (‘phase’) where one has to take
another definition of the ‘densities’ because of the change of the volume. In this second phase
the ‘densities’ are not necessarily finite.

The fact that the reduced normalization factor might have a direct physical interpretation
is known from the raise and peel model [14]. This is a one-dimensional stochastic model with
nonlocal transition rates and its reduced normalization factor (whose logarithm is proportional
to the square of the system size) coincides with the number of configurations of the two-
dimensional ice model with domain-wall boundary condition—an equilibrium problem. In
a different context [2], it was shown that certain nonequilibrium expectation values in the
boundary sine-Gordon model coincide with associated equilibrium state expectation values.
It is our aim to show that a similar mapping exists for the TASEP.

In section 3, we define the one-transit walk (OTW) model. This model, which is not
parity invariant, depends on two parameters which are the Boltzmann weights or fugacities of
contact points. We compute the partition function of this model as well as the two densities
corresponding to the two fugacities. The two densities have a clear physical meaning. The
phase diagram of the OTW model is obtained from the expressions for these densities. It is the
same as that of the TASEP [15–19] if we replace the two fugacities with the boundary rates
of TASEP. As we are going to show, the derivation of the phase diagram of the TASEP model
from the analytic properties of the number of ‘particles’ as a function of fugacities will give
a better understanding of the nature of the phase transitions. In section 3.5, we discuss the
microscopic properties of the OTW model making clear the connection with the TASEP. The
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connection between the TASEP normalization calculation and a random walk was first noted
in [16] and further developed in [28]. We conclude with a discussion of the phase diagram
obtained from the ‘densities’ of the partially asymmetric simple exclusion process (PASEP)
[20, 21]. In this case we have three kinds of ‘particle’ numbers: two associated with the
boundary rates and one associated with the back hopping rate q. At the symmetric point q = 1
a new kind of phase transition occurs. The number of ‘particles’ N(q) associated with the rate
q is proportional to the length n of the system for q < 1 and to n2 for q > 1.

Our conclusions are presented in section 5.

2. The normalization as a positive polynomial

Let us start by considering an arbitrary Markov process in continuous time on a state space
spanned by the states {|a〉}na=1, whose master equation is given by

d

dt
P̄ t (a) =

∑
b �=a

(rabP̄ t (b) − rbaP̄ t (a)). (1)

The rab are the transition rates from state |b〉 to |a〉 and P̄ t (a) is the (unnormalized) probability
to find the system at time t in state |a〉. Equation (1) can be conveniently rewritten as

d

dt
|P̄ t 〉 = −H |P̄ t 〉 |P̄ t 〉 =

n∑
a=1

P̄ t (a)|a〉 (2)

where H is the matrix with off-diagonal elements Hab = −rab and whose columns add up
to zero. One of the main properties of interest of such a Markov process is its long time
behaviour. In the limit t → ∞ the system approaches its stationary state |P̄ ∞〉, which we will
assume to exist and for simplicity to be unique, given by

H |P̄ ∞〉 = 0. (3)

The stationary state is thus given by the right eigenvector of the matrix H corresponding to
its eigenvalue 0. This equation can be solved in the following formal way, see e.g. [22]. Let
H(a, b) be the matrix corresponding to H with the ath row and bth column removed. The
cofactor X(a, b) is then defined by,

X(a, b) = (−1)a+b det H(a, b). (4)

If the eigenvalue 0 is unique,

0 = det H =
∑

b

HabX(a, b) =
∑

b

HabX(b, b) (5)

where we have used X(a, b) = X(b, b) for all a (see appendix A). We see that the eigenvalue
equation (3) is solved by the cofactors of H,

H |P 〉 = 0 P(b) = X(b, b). (6)

This solution fixes a particular normalization of the eigenvector for all system sizes. This
normalization is uniquely defined up to an overall rescaling of H, or equivalently a rescaling
of time (which can vary with the system size). To be able to interpret P(b) as a probability
distribution, we write

P̄ ∞(b) = P(b)/Zn Zn =
n∑

b=1

P(b) =
n∑

b=1

X(b, b). (7)

It can be shown using the matrix-tree theorem [12, 13] that the normalization Zn of
a stationary state of any stochastic (Markov) process is always given by a homogeneous
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polynomial in the rates rab (some of which might be equal or be zero), of degree n − 1 and
with positive coefficients, i.e. it has the form of a generating function. A simple proof of this
important statement is for example given in [22], which we have included in appendix A.

We would like to identify the rates rab as generalized Boltzmann factors or fugacities
rab = zab , and Zn({zab}) as a generalized partition sum for nonequilibrium systems. Since
the normalization Zn is a polynomial in the variables zab with positive coefficients, by the
Cauchy–Schwartz inequality its negative logarithm,

Fn = −log Zn (8)

is therefore a convex function in all its arguments zab. In analogy with equilibrium statistical
mechanics, we will associate with each rate rab = zab a ‘particle number’ Nab,

Nab = −zab

∂Fn

∂zab

. (9)

These numbers are positive and increasing functions of the fugacities for any size of the system
but they are linearly dependent. One can arbitrarily choose one rate equal to one which fixes
the time scale and leaves the remaining rates dimensionless. In this way we are left with one
fugacity less. In the large n limit,

Nab = V (n)ρab (10)

where V (n) is the volume and ρab are the ‘densities’. One can now use the equilibrium
approach to the theory of phase transitions and apply it to the densities ρab. A ‘first-order
phase transition’ corresponds to a discontinuity of the fugacity as a function of the density and
a ‘second-order phase transition’ corresponds to the vanishing of the derivative of the fugacity.
The physical meaning of these phase transitions is not obvious. Does a ‘second-order phase
transition’ for example, correspond to an infinite correlation length? This remains as an open
question. In section 3 we will show, in the case of TASEP, that using our procedure one
recovers the known phase diagram.

It may happen however, as it will in our example below, that all cofactors X(b, b) contain
a common nontrivial polynomial factor. Such a common factor will cancel out in P̄ ∞(b)

and hence cannot contribute to the nonequilibrium phase behaviour. In (8), however, it could
give rise to spurious singularities that are not related to the physical phase transitions. In the
example of section 3 no such spurious phase transitions appear (see section 4).

There is another major difference, however, between equilibrium systems with short-range
interactions and the present problem: the ‘particle numbers’ are not necessarily extensive
quantities (see the examples in sections 3.3 and 3.6). This implies that in the parameter space,
the ρab might diverge and we have to change the definition of the factor V (n) in (10). Actually
such a phenomenon is also known in equilibrium problems with nonlocal interactions (see
[23]) in the theory of special surface phase transitions [24]. As we are going to show in
section 3.6 the analogy goes deeper.

The philosophy we adopt in this paper is to assign a physical meaning to the purely
formally defined normalization factor and ‘densities’ by looking at simple weighted walk
problems for which we can compute the partition functions. The weights of the configurations
depend on parameters which correspond to the rates of the stochastic processes and the partition
function coincides with the normalization factor defined in (7) if a common factor to all the
cofactors is removed. In the following sections we illustrate this approach with the help of
an example. We first consider a combinatorial problem which is interesting on its own. This
is the one-transit walk model. We will compute its partition function and obtain the phase
diagram of the model from the properties of the densities. We also show that the same partition
function coincides with the normalization factor of the TASEP model.
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3. The OTW model versus the TASEP

The TASEP has grown to be one of the main theoretical models of nonequilibrium statistical
physics. This is not only due to its simplicity and general applicability, but also because
its stationary probability distribution (SPDF) and other properties can be calculated exactly
[15–19]. In this paper, we show that this SPDF can be regarded as an equilibrium probability
distribution of a simple model of a walk near an interface. Since the walk model is an
equilibrium system, it can be described thermodynamically using standard methods. The
phase behaviour of the TASEP can be explained in terms of adsorption transitions of the walk
on the interface.

In section 3.1 we briefly review the TASEP model with open boundaries. We furthermore
present the DEHP algebra which is going to be used in section 3.4. In section 3.2, we introduce
a model of a walk in the vicinity of a fixed interface. The walk is allowed to penetrate the
interface once. Both ends of the walk are fixed but the point of penetration is free. An excess
interface fugacity 1/z1 is associated for contacts above the interface, and a fugacity 1/z2 for
contacts below. We call this model the OTW. The walk model without penetration was used
as a simple model for polymer adsorption in [23]. After discussing the thermodynamics of
the walk model, we show in section 3.4 that it is closely related to the TASEP with open
boundaries. We show that the statistical mechanical partition function Z(z1, z2) of the OTW
is equal to the reduced normalization of the stationary state of the TASEP if the interface
fugacities in the walk model are equal to the input and output rates of the two reservoirs.
After discussing the thermodynamics of the OTW we calculate the phase diagram exactly, see
section 3.3. In section 3.4 we give the matrix algebra behind the OTW and its relation to the
DEHP algebra.

It is remarkable that in the OTW model one can define a current density operator, whose
average values coincide with those of the TASEP, see section 3.5. We also show that the
thermodynamic TASEP density ρ and current J are related to the contact densities ρ1 and ρ2,
conjugate to z1 and z2 respectively, as

2ρ − 1

J
= 1 − ρ2

z2
− 1 − ρ1

z1
(11)

where

ω = − lim
n→∞

1

n
log Zn(z1, z2) ρi = −zi

∂ω

∂zi

. (12)

These equations show that one may derive the thermodynamic behaviour of quantities for
a nonequilibrium model from those of an equilibrium model. We hope to make contact
between our approach and the formulation of a free energy functional for the TASEP from
large deviation functions as adopted in [25, 26]. We would also like to point out that the walk
model has an appealing analogy with a continuous model for the dynamics of shocks in terms
of which the TASEP phase diagram can be explained quantitatively [27].

3.1. The TASEP revisited

The asymmetric simple exclusion process in continuous time is a particle hopping model with
excluded volume in one dimension, where particles hop from the left to the right with rate 1.
In the presence of open boundaries, the input rate of particles on the left of the system is α

and the output rate on the right is β, see figure 1.
If the τi ∈ {0, 1} denotes the presence or absence of a particle, one would for example like

to know the probability P(τ1, τ2, . . . , τn) to find a system in configuration {τ1, τ2, . . . , τn} in the
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α β

Figure 1. Sample TASEP configuration. Particles enter the system from the left with rate α and
leave from the right with rate β. Particles hop in the bulk from left to right with rate 1.

4

2

0

−2

−4

−1 1 2n+1

Figure 2. An example of a one-transit walk starting at (0, 0) and ending at (2n, 0) crossing the
x-axis only once.

long time limit. In this limit, all these probabilities are stationary, and in [15] this stationary
state was calculated exactly. In [16] it was shown that this solution can be conveniently
expressed in a matrix product form,

P(τ1, . . . , τn) = 1

Z̃n

〈W |
n∏

i=1

(τiD + (1 − τi)E)|V 〉 (13)

where the normalization Z̃n is given by

Z̃n = 〈W |(D + E)n|V 〉 (14)

and the matrices D and E, and the vectors 〈W | and |V 〉 are a representation of the so-called
DEHP algebra,

DE = D + E D|V 〉 = 1

β
|V 〉 〈W |E = 1

α
〈W |. (15)

We will show that (14) is related to the partition function of the OTW model.

3.2. The one-transit model

Consider a statistical model of a path on the rotated square lattice. Paths start at (0, 0) and end
at (2n, 0), can only move in the North-East (NE) or in the South-East (SE) direction and cross
the x-axis exactly once, see figure 2. We call such a path a OTW. Paths of this form that do not
cross the x-axis are called Dyck paths. We associate energies −ε1 and −ε2 with the returns
(or contact points) of the path above and below the x-axis, respectively. To make contact with
section 2 we implement this in the following way. A fugacity z1 = eε1/kT is given to each
down step, and z2 = eε2/kT to each up step, except those ending on the x-axis. This model is
directly related to the canonical model of [28].

By reflecting the last part of the OTW in the x-axis, it can be easily seen that the total
number of possible OTW paths is equal to the number of Dyck paths of length 2n. It is known,
see e.g. [29], that the number of Dyck paths with p returns is given by Ballot numbers,

Bn,p = p

n

(
2n − p − 1

n − 1

)
= p(2n − p − 1)!

n!(n − p)!
. (16)
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A B C

Figure 3. The OTW always factorizes into two Dyck paths—one from A to B and above y = 0,
and one from B to C and below y = 0.

The total number Cn of Dyck paths of length 2n can be obtained by summing over p in (16),
or by noting that it is equal to the number of Dyck paths of length 2n + 2 with exactly one
return (for such a path the first and last step are fixed to be up and down, respectively),

Cn =
n∑

p=1

Bn,p = Bn+1,1 = 1

n + 1

(
2n

n

)
(17)

which is the Catalan number. The partition function of the one-transit model is simply given
by

Zn(z1, z2) = (z1z2)
nZ̃n(z1, z2) (18)

where

Z̃n(z1, z2) =
n∑

p=0

Bn,p

p∑
q=0

z
−q

1 z
−p+q

2 . (19)

An OTW always factorizes into two Dyck paths as illustrated in figure 3.
It follows from this factorization that the partition sum of the OTW can also be written as

Zn(z1, z2) = (z1z2)
n

n∑
p=0

Z̃p(z1,∞)Z̃n−p(∞, z2). (20)

This formula shows that we can also interpret our model as the combination of two contact
models with a movable but impenetrable wall in between them at a random position, each
position being equally probable. Equation (20) thus defines the partition function of an
annealed system, i.e. where the partition sum is averaged over the random position of the wall.

The partition sum (20) is equal to (αβ)n times the reduced normalization (14) of the
TASEP [15–19] if the fugacities z1 and z2 are replaced by the boundary input and output rates
α and β. This result is important since it will allow us to associate the ‘densities’ defined
formally from the reduced normalization of the TASEP with the physical densities of the OTW
model. In section 3.4, we will go deeper into the relation between the OTW model and the
TASEP, but before that we first describe the phase diagram of the OTW model.

3.3. The phase diagram of the OTW model

We define the grand potential per site for the gas of contacts as

ω = − lim
n→∞

1

n
log Zn. (21)

Note that to get rid of spurious factors of 2 in subsequent formulae we divide by n instead
of the system size 2n. The potential ω can be easily calculated from (20) once we know the
asymptotic properties of Z̃n(z,∞) = Z̃n(∞, z). This is well known, see e.g. [16, 23], and
can for example be derived from the differential equation it satisfies,

−(1 − z)(1 − 2z)Z̃′
n(z,∞) + z(z + n(1 − 2z)2)Z̃n(z,∞) = 2z2 (2n − 1)!

n!2
. (22)



4310 R Brak et al

A

B

C D

Figure 4. The OTW with one contact marked (the white circle at B), factorizes into a Dyck path
from A to B, and an OTW from B to D.

Analysing the large n behaviour of this equation for the regions z > 1/2, z = 1/2 and z < 1/2
we immediately obtain

Z̃n(z,∞) ≈




z

(1 − 2z)2

4n

√
πn3/2

z > 1/2

4n

√
πn1/2

z = 1/2

1 − 2z

1 − z

1

zn(1 − z)n
z < 1/2.

(23)

The grand potential ω is given by minimizing over the position of the domain wall, and is
therefore given by

ω(z1, z2) = −log 4z1z2 + inf
0�x�1

ωx(z1, z2) (24)

where

ωx(z1, z2) =
{

0 z1, z2 � 1/2
x log 4z1(1 − z1) + (1 − x) log 4z2(1 − z2) elsewhere.

(25)

From (24) one finds the grand potential in all regions of the phase diagram,

ω(z1, z2) =



−log 4z1z2 z1, z2 � 1/2
−log z2 + log(1 − z1) z1 < 1/2, z2 > z1

−log z1 + log(1 − z2) z2 < 1/2, z1 > z2.

(26)

We now turn to the calculation of the contact densities, which are the order parameters
of the OTW model. From the definition of the walk model it immediately follows that the
probabilities 〈âi〉n and 〈b̂i〉n to have a contact at site 2i above or below the x-axis, are given
by,

〈âi〉n = (z1z2)
i Z̃i(z1,∞)Zn−i (z1, z2)

Zn(z1, z2)
(27)

〈b̂i〉n = (z1z2)
n−i Zi(z1, z2)Z̃n−i (∞, z2)

Zn(z1, z2)
. (28)

The easiest way of seeing this is the fact that the OTW with a single contact marked—as
illustrated in figure 4—factorizes into a Dyck path and a OTW.

We define the average number of contacts at x by

〈âx〉 = 〈âxn〉n 〈b̂x〉 = 〈b̂xn〉n (29)

and find in the thermodynamic limit n → ∞,

(〈âx〉, 〈b̂x〉) =



(0, 0) z1, z2 � 1/2
(ρ(z1), 0) z1 < 1/2 z2 > z1

(0, ρ(z2)) z2 < 1/2 z1 > z2

(30)
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0 1/2

1/2

z1

z2

desorbed

desorbed

desorbed

adsorbed

adsorbed

desorbed

Figure 5. Phase diagram of the walk model.

with

ρ(z) = 1 − 2z

1 − z
. (31)

In this limit, these numbers are independent of x except on the line z1 = z2 = z where we find

(〈âx〉, 〈b̂x〉) = (ρ(z)(1 − x), ρ(z)x). (32)

The total number of contacts above and below are denoted by 〈â〉 and 〈b̂〉, respectively, and
the corresponding thermodynamic densities can be calculated through derivatives of the grand
potential,

a = lim
n→∞

〈â〉
n

= 1 + z1
∂ω

∂z1
b = 1 + z2

∂ω

∂z2
. (33)

Note that ω is not everywhere differentiable. If ω is not differentiable in a point z∗ we define

z∗
∂ω

∂z
(z∗) = lim

ε→0

1

2

(
(z∗ − ε)

∂ω

∂z
(z∗ − ε) + (z∗ + ε)

∂ω

∂z
(z∗ + ε)

)
. (34)

With this definition, (33) is valid everywhere. Because we average over the position of the
domain wall, the densities a and b are not independent. Their values can be easily calculated
and are given by,

(a, b) =




(0, 0) z1, z2 � 1/2
(ρ(z1), 0) z1 < 1/2 z2 > z1

(0, ρ(z2)) z2 < 1/2 z1 > z2

(ρ(z)/2, ρ(z)/2) z1 = z2 = z � 1/2.

(35)

Note that either both densities are equal or only one of the two does not vanish. This means
that effectively one sees only one density. We thus find that for z1, z2 > 1/2 the walk is
entirely desorbed from the interface. When z1 < 1/2 and z2 > z1 the walk is adsorbed above
the interface, the contact density a is nonzero, while it is desorbed below and vice versa when
z2 < 1/2 and z1 > z2, see figure 5.

The grand potential (26) is nonanalytic at the lines z1 = 1/2 when z2 � z1 and z2 = 1/2
when z1 � z2. There is also a singularity at the line z1 = z2 = z when z < 1/2. These
lines therefore indicate phase boundaries. There is a first-order phase transition along the line
z1 = z2 = z for z < 1/2 along which the mirror symmetry of the system is spontaneously
broken. The sum of the two densities r = a + b varies continuously across the line but their
difference d = a − b is discontinuous.
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Above the line z2 = 1/2(z1 � z2) the densities of contact points a = 〈â〉/n and b = 〈b̂〉/n

vanish as n → ∞. Approaching the line z2 = 1/2 from above, the number of contacts 〈b̂〉
diverges like

〈b̂〉 ∼ 1

2z2 − 1
(36)

where we have used (23). Using the same equation, on the critical line z2 = 1/2 we get

b ∼ n−1/2 = n−φ (37)

and below the critical line

b ∼ 1 − 2z2 = (1 − 2z2)
1/φ−1. (38)

A similar behaviour is obtained for the line z1 = 1/2 when z2 � z1 and if we replace the density
b by a. The critical behaviour (36) and (38) as well as the finite-size scaling behaviour (37)
characterize a special surface phase transition [24] with a single critical exponent φ = 1/2.
A similar exponent is found in other equilibrium problems with long range interactions [23].
The interest in discussing the phase diagram comes from the fact that it gives another physical
interpretation of the phase transitions observed in TASEP.

We conclude this section with a description of the model using the canonical ensemble.
We now consider a and b as free parameters. The canonical free energy per site for given
values of a and b can be calculated from the grand potential ω(z1, z2),

f (a, b) = sup
z1,z2

((1 − a) log z1 + (1 − b) log z2 + ω(z1, z2)) (39)

from which we find

f (a, b) = max{g(a, b), g(b, a)} (40)

g(a, b) = (1 − a − b) log(1 − a) − (2 − a − b) log(2 − a). (41)

This result can be conveniently rewritten using r = a + b and d = a − b as

f (a, b) = f̃ (r, d) = (1 − r) log

(
1 − r + |d|

2

)
− (2 − r) log

(
2 − r + |d|

2

)
. (42)

The phase diagram in figure 5 can then be rederived by minimizing

f̃ (r, d) − (1 − r) log z1z2 − d log z1/z2 (43)

with respect to r and d. The first-order phase transition along the line z1 = z2 < 1/2
is immediately apparent in (42) because of the discontinuity of the first derivative of |d|.
Because r has to be positive, we find a second-order phase transition to the region z1, z2 > 1/2
where r = 0. The canonical free energy per site can be used to calculate large deviations.

3.4. Connection with the totally asymmetric simple exclusion process

In [16], the stationary state of the TASEP was constructed using equivalent representations
of the DEHP algebra given by (15). The reduced normalization calculated using this method
is equal to the partition sum of the OTW model, given by (19), if the boundary rates of the
TASEP are replaced by the contact fugacities of the OTW model. In this section we show
more precisely how the OTW model of section 3.2 is related to the TASEP.

Following an observation by Brak and Essam [28] (see also [30]) that the different
equivalent representations of the DEHP algebra can be interpreted as transfer matrices for
various lattice walk models, we construct a new representation which will give the transfer
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matrix for the OTW model. We will show that the partition function Z̃n(z1, z2) can be written
in the following form:

Z̃ = 〈L|T n|R〉 (44)

where T is the transfer matrix. We introduce a two-step transfer matrix T = T oT e, where

T o =
(

D1 S

0 D2

)
T e =

(
E1 0
0 E2

)
. (45)

The matrices D1 and E1 will act as transfer matrices for the walk above the x-axis, and D2

and E2 for the walk below the x-axis. The upper triangular form of T o then ensures that the
walk can cross the x-axis only once. We will now describe the transfer matrices in detail.

The matrix element (D1)ij for j � 2 is the weight of an edge from a point with height
y = 2i − 2 to a point with height 2j − 3. The first column of D1 is auxiliary whose meaning
will become clear later. Similarly, (D2)ij for j � 2 denotes the weight of an edge from a point
with height y = 2 − 2i to a point with height 3 − 2j and the first column is again auxiliary. If
the ket |n〉 represents the height n, the matrices D1,D2 and S are given in terms of projectors
as,

D1 =
∞∑

n=0

(|2n〉 + |2n + 2〉)〈2n + 1| (46)

D2 = x1|0〉〈u| +
∞∑

n=0

(|−2n〉 + |−2n − 2〉)〈−2n − 1| (47)

S = x2|0〉〈u| + |0〉〈−1| (48)

where |u〉 denotes an auxiliary ket vector. Explicitly, the matrices D1 and D2 are given by,

D1 =




0 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1

. . .

0 0 0 0
. . .


 D2 =




x1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1

. . .

0 0 0 0
. . .


 (49)

and the matrix S is given by,

S =




x2 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0

. . .

0 0 0 0
. . .


 . (50)

The parameters x1 and x2 are arbitrary and will not enter the partition sum. For simplicity
we could therefore set them to zero, but we will need them later for another reason (see
equation (58)).

The matrix element (E1)ij for i � 2 is the weight of an edge from a point with height
y = 2i − 3 to a point with height 2j − 2. The first row of E1 is auxiliary. Similarly, (E2)ij
for i � 2 denotes the weight of an edge from a point with height y = 3 − 2i to a point with
height 2 − 2j and its first row is again auxiliary. In terms of projectors, the matrices E1 and
E2 are given by,

E1 = x3|u〉〈0| + z−1
1 |1〉〈0| +

∞∑
n=1

(|2n − 1〉 + |2n + 1〉)〈2n| (51)
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E2 = z−1
2 |−1〉〈0| +

∞∑
n=1

(|−2n − 1〉 + |−2n + 1〉)〈−2n|. (52)

Explicitly, they are given by,

E1 =




x3 0 0 0 0
z−1

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0

. . .
. . .


 E2 =




0 0 0 0 0
z−1

2 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0

. . .
. . .


 . (53)

Also here, the parameter x3 is arbitrary and will not enter the partition sum.
To indicate that walks can only start and end at height 0, we furthermore define the vectors

〈L| = (1〈L|, 2〈L|) and |R〉 = (|R〉1, |R〉2), such that

1〈L| = 〈0| = (1, 0, 0, . . .) 2〈L| = 0

|R〉1 = |0〉 = (1, 0, 0, . . .) |R〉2 = |0〉 = (1, 0, 0, . . .).
(54)

It is straightforward to check that the partition sum (19) of all walks of length 2n can be
expressed as (44). For future convenience we also define the even and odd identity matrices

I o,e =
(

I
o,e
1 0
0 I

o,e
2

)
(55)

where

I o
1 = |0〉〈u| +

∞∑
n=1

|2n〉〈2n − 1| I o
2 = |0〉〈u| +

∞∑
n=1

|−2n〉〈−2n + 1| (56)

I e
1 = |u〉〈0| +

∞∑
n=1

|2n − 1〉〈2n| I e
2 = |u〉〈0| +

∞∑
n=1

|−2n + 1〉〈−2n|. (57)

From the result (19) one may already have inferred that the partition sum of the OTW
model is equal to the normalization of the stationary state of the asymmetric simple exclusion
process (ASEP) with open boundaries [15]. The fugacities z1 and z2 are then identified with
the input and output rates α and β, respectively. Indeed, if we set the parameters xi to the
values,

x1 = z−1
2 x2 = z−1

2 x3 = z−1
1 (58)

we find that the transfer matrices T o and T e, and the vectors 〈L| and |R〉 constitute the
following representation of the DEHP algebra (15):

D = T oI e E = I oT e |V 〉 = |R〉 〈W | = 〈L|. (59)

Various representations of [16] for the DEHP matrices were used as transfer matrices in [28] to
find bijections between several different path problems. Here we remark that this interpretation
of the DEHP matrices allows us to express a stationary nonequilibrium probability distribution
in terms of an equilibrium distribution. Among other things, this has the consequence
that the thermodynamics of the nonequilibrium model is prescribed by standard equilibrium
thermodynamics.

3.5. OTW–TASEP relation

In this section, we show how the TASEP current and density can be related to the equilibrium
densities of the OTW model.
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3.5.1. Current. The TASEP current operator is given by,

Ĵ = (T oI e)(I oT e). (60)

The average value,

Jn,i = 〈Ĵ i〉n = 1

Z̃n

〈L|T i−1Ĵ T n−i−1|R〉n (61)

has the following meaning in the path problem. The two identity matrices in (60) have, above
the x-axis, the effect of forcing an upstep between columns 2i − 1 and 2i and a downstep
between 2i and 2i + 1. Below the x axis they have the effect of forcing a downstep between
columns 2i − 1 and 2i and an upstep between 2i and 2i + 1. Therefore, Ji is the average
number of paths that have a local maximum above or a local minimum below the x-axis
between columns 2i −1 and 2i + 1. The pieces of the path before and after these local extrema
can be concatenated to obtain a path of length 2n − 2. Since the local extrema may occur at
any height, we thus obtain all paths of length 2n − 2 and therefore

Jn,i = Jn = Z̃n−1

Z̃n

(62)

independent of i. In the OTW model, the current corresponds to the pressure, since it is
essentially the volume derivative of the grand potential. The value of the current

J = lim
n→∞ Jn (63)

in the various parts of the phase diagram is

J =



1/4 z1, z2 � 1/2
z1(1 − z1) z1 < 1/2 z2 > z1

z2(1 − z2) z2 < 1/2 z1 > z2.

(64)

3.5.2. Density. The contact operators can be given in terms of projectors,

âi = |1〉2i−1〈0|2i b̂i = |−1〉2i−1〈0|2i (65)

so that the contact number operators can be rewritten as

â =
n∑

i=1

âi b̂ =
n∑

i=1

b̂i . (66)

The TASEP density operator τ̂i also has an expression in terms of the projectors of the OTW
model. The operator τ̂i is obtained by putting the matrix I e instead of T e at position 2i

τ̂i = I e(2i). (67)

This has the effect that between columns 2i − 1 and 2i each walk above the x-axis must go up.
Walks below the x-axis must go down between these columns at all heights except y = −1,
where it also may go up. From the result of Derrida et al [16], or from a combinatorial
argument [28] it follows that the expectation value 〈τ̂i〉 can be written as

〈τ̂i〉n = 1

Z̃n(z1, z2)


n−i−1∑

p=0

CpZ̃n−p−1(z1, z2) +
1

z2
Z̃i−1(z1, z2)Z̃n−i (∞, z2)


 (68)

where we have used (17) and (19). Using the expression for the expectation values of the
contacts 〈âi〉n and 〈b̂i〉n, see equations (27) and (28), we find

〈τ̂i〉n =
n−i−1∑
p=0

Cp

p∏
j=0

Jn−j +
1

z2
Jn−1〈b̂i−1〉n−1 (69)
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and with the particle–hole symmetry of the TASEP this is equivalent to

〈τ̂i〉n = 1 −
i−2∑
p=0

Cp

p∏
j=0

Jn−j − 1

z1
Jn−1〈âi−1〉n−1. (70)

Equations (69) and (70) give the relations between the local densities of the OTW model and
the TASEP. Combining (69) and (70) we find

〈τ̂i〉n = 1

2


1 +

n−i−1∑
p=i−1

Cp

p∏
j=0

Jn−j + Jn−1

(
1

z2
〈b̂i−1〉n−1 − 1

z1
〈âi−1〉n−1

)
 . (71)

In the bulk, the second term on the right-hand side of (71) vanishes in the thermodynamic
limit. We thus find that in each part of the phase diagram the following relation between the
TASEP bulk density ρ and current J , and the equilibrium densities a and b is satisfied,

2ρ − 1

J
= b

z2
− a

z1
(72)

where z1 = α, z2 = β and a and b are given by (35).

3.6. The partially asymmetric exclusion process

The TASEP can be extended with a nonzero rate q for back hopping. The resulting model
is called the PASEP. Exact results for the symmetric case (q = 1) are given in [32] and the
stationary state of the general PASEP can also be found using a matrix method [20, 21]. To
the rate q will now correspond a ‘number of particles’ N(q), not present in the TASEP. For
the forward bias regime (q < 1) the phase structure is similar to the TASEP model; we are
interested in a new phenomenon which occurs in the vicinity of q = 1. One finds

N(q) = q

1 − q
n + O(log n) q < 1 α, β > (1 − q)/2

N(q) = 1

4
n2 + O(n) q > 1.

(73)

This implies a change of the volume when the transition rate q changes. We note that the
density ρ(q) = N(q)/n defined for q < 1 diverges for a finite value of q, namely q = 1.
For q > 1 we have to redefine the density as ρ(q) = N(q)/n2. This density turns out to
be independent of the fugacity. A change of the volume was also observed in TASEP at the
phase transition between the disordered state and the maximum current state. The latter phase
transition could be interpreted as a special surface phase transition known in polymer physics
(the number of ‘particles’ was either proportional to the size of the system or independent of
the size of the system). Equation (73) describes a different phase transition since the number
of ‘particles’ is either proportional to the size of the system or to the square of the size of the
system. We expect therefore that a simple extension of the OTW model could explain what
one observes. This is indeed the case. In the new model, a walk gets height-dependent step
weights. One can formulate a thermodynamical theory, analogous to that of a heterogeneous
gas in a gravitational field [33] using the partition function which is equal to the normalization
factor of [21]. For q > 1 the OTW model is genuinely two dimensional, and has therefore
a volume of order n2. For q < 1 the system undergoes a bulk phase transition and the only
contributions to the grand potential now come from the surface, i.e. the system becomes one
dimensional. As in the TASEP, for q < 1 the system may undergo further phase transitions
through enhancement of the surface chemical potentials. This is indeed what happens and we
find the adsorption–desorption transitions discussed in section 3.3.
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Figure 6. Transition graph of the TASEP for L = 3.

4. The normalization from cofactors

The TASEP can be formulated using a transition matrix, see e.g. [16]. The normalization
as defined by (14) is not equal to that calculated from the cofactors of this transition matrix
using the results of section 2. In this approach, for each system size, all the cofactors have a
common factor which is a nontrivial polynomial.

Consider for example the TASEP on three sites, and let H be its transition matrix. The
transition graph, i.e. the graph that has a directed edge from vertex b to a with weight −Hab

and no edge if a = b or Hab = 0, for the TASEP on a chain of three sites is given in figure 6.
The weighted sum of all directed spanning trees with the vertex (001) as a sink for example

is given by αβ2(1 + α + β) which is indeed equal to the corresponding cofactor of H. It turns
out that each of the cofactors has a factor (1 + α + β). The sum of all directed spanning trees
on this graph is

Z = (1 + α + β)(α3 + α2β + 2α3β + αβ2 + 2α2β2 + 2α3β2 + β3 + 2αβ3 + 2α2β3) (74)

which is indeed (αβ)3(1 + α + β) times the TASEP normalization as defined in (14). We
observe that the factor (1 + α + β) is never zero for positive real parts of the rates α and β.

As hinted at in section 2, we believe that in general this common factor will not give rise
to additional singularities for positive real rates in the thermodynamic limit. We believe that
a common factor is nonzero in the space of complex rates if the real parts of all the rates are
positive. This is called the half-plane property, see e.g. [31]. We have checked this for small
system sizes in the case of the TASEP. In the spirit of the Lee–Yang theory it implies that
the common factor does not develop singularities in the thermodynamic limit for positive real
rates and hence it will not influence the phase diagram, except perhaps at the origin. Moreover,
upon introduction of inhomogeneities in the transition rates, the cofactors will no longer have
a common factor. If these inhomogeneities are small enough the physical properties of the
system should remain the same.

5. Conclusion

In a previous paper [14] we have shown that a properly chosen normalization factor of the
probability distribution function describing the stationary state of the ‘raise and peel’ one-
dimensional model is given by the partition function of the two-dimensional ice model with
domain-wall boundary conditions—an equilibrium problem with nonlocal interactions. This
connection was proved for small systems but there are good reasons [34] to believe that this
conjecture is valid for any size of the system. It turns out that the same way to choose the
normalization factor was suggested in a general framework by Blythe and Evans [8] and shown
to be useful in order to use the Lee–Yang approach to nonequilibrium problems. This brought
us to have a closer look at the problem. We have first noted that the ‘number of particles’
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associated with various rates are nondecreasing functions of the rates seen as fugacities. This
allows us, as in equilibrium problems, to determine directly the phase diagram of a model,
once the normalization factor is known. This observation suggests, obviously, that one can
try approximative approaches such as finite-size scaling or power expansions to determine the
nature of the phase transition in the case when the normalization factor is not known exactly
for all sizes.

We have also shown, in the example of TASEP that, as in the ‘raise and peel’ model,
the normalization factor can be understood as a partition function of a two-dimensional
equilibrium model: the one-transit walk model. We also think that the correspondence between
normalization factors of one-dimensional stationary states and two-dimensional equilibrium
problems with nonlocal interactions is of a more general validity.
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Appendix A. The normalization as a homogeneous polynomial

The normalization of a stationary state of any stochastic (Markov) process can always be
interpreted as a polynomial in the rates with positive coefficients, i.e. it has the form of
a generating function. By the Cauchy–Schwartz inequality, the negative logarithm of this
generating function is therefore convex and its derivatives with respect to the rates are proper
‘particle’ numbers, i.e. the second derivatives are positive.

The above statement is implied by the matrix-tree theorem [11–13]. Here we show a
simple proof which can be found in a slightly different version in [22].

Lemma 1. Let H be a matrix with off-diagonal elements Hab = −rab and such that all
columns add up to zero,

∑
a Hab = 0. Assume that H has a unique largest eigenvalue equal

to 0.

(a) The cofactors X(a, b) are constant for each column, i.e. they do not depend on a.

(b) The eigenvector corresponding to the largest eigenvalue 0 is a polynomial in the rates rab

with positive coefficients.

Proof. Let H(a, b) be the matrix corresponding to H with the ath row and bth column
removed. The cofactor X(a, b) is then defined by,

X(a, b) = (−1)a+b det H(a, b). (A.1)

The difference X(a, b) − X(a + 1, b) of any two successive cofactors is proportional to the
sum of determinants of two matrices that differ only in one row, and can thus be expressed as
the determinant of the sum of these matrices, which is a zero column-sum matrix. This last
determinant therefore vanishes and hence X(a, b) = X(b, b) for all a.

Because the eigenvalue 0 is unique and,

0 = det H =
∑

b

HabX(a, b) =
∑

b

HabX(b, b) (A.2)
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the elements of the eigenvector corresponding to the eigenvalue 0 are given by the cofactors
X(b, b). Each such cofactor is of the form

X(b, b) =
∑
π

N(π1, . . . , πb−1, πb+1, . . . , πn)

n∏
c=1
c �=b

rπc,c (A.3)

where the sum is over any permutation π = {π1, . . . , πb−1, πb+1, . . . , πn} of {1, . . . , b − 1,

b+1, . . . , n} and N(π) ∈ Z. We now show that in fact N(π) ∈ {0, 1}, hence proving assertion
(b) of lemma 1.

Let rρa,a = 1 for a particular permutation ρ, and all other rac = 0. From (A.3) we
then see that N(ρ1, . . . , ρb−1, ρb+1, . . . , ρn) is the determinant of a matrix which we will call
H(b, b, ρ). If ρa �= b for all a = 1, . . . , b − 1, b + 1, . . . , n, the columns of H(b, b, ρ) all add
up to zero and det H(b, b, ρ) = 0. If on the other hand ρa = b for a particular a = a∗, then
H(b, b, ρ) contains zeros in the column corresponding to a∗ except for the diagonal element
which is 1. By deleting the column and row of H(b, b, ρ) corresponding to a∗ we find again
a matrix of the form of H(b, b, ρ) but with one dimension less. The result thus follows by
expanding the determinant with respect to the column corresponding to a∗ and induction on n.

�
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